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Abstract

Brain-Computer Interfaces (BCls) have been widely employed to identify
users’ intention to control external objects by decoding motor imagery (MI)
from an electroencephalogram (EEG). In recent years, the contribution of
deep learning (DL) has had a phenomenal impact on MI-EEG-based BCI.
Specifically, deep learning is highly attractive for MI-BCI as it requires little
to no preprocessing, which results in a significant decrease in latency be-
tween a patient's intention and the execution of the command by the device,
be it a prosthetic or a cursor. This study investigates the feasibility of using
low-cost dry-electrode EEG recording to capture motor imagery for train-
ing neural networks to classify imagined right-hand fist clenches vs resting
conditions and subsequent real-time online inference. This holds im-
portance for many kinds of brain-computer interfaces, especially for people
with impaired movement. The online aspect is optimized to minimize laten-
cy with a hard limit of 1 second from capture to classification. A complete
end-to-end pipeline is provided, and although high levels of classification
accuracy were not achieved, the framework sets up a clear path to imple-
ment rapid inference on consumer devices and suggests several future ave-

nues to improve the quality and accuracy of results.
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Introduction
Brain-Computer Interfaces

Brain-computer interfaces (BCIs) translate users’ intentions via brain
activity into external device commands used for interaction with the
environment, applications, hardware devices, and prosthetics. The
methods for measuring brain activity are usually divided into two
categories: invasive and non-invasive. Invasive methods include elec-
trocorticography (ECoG), where electrical potentials are recorded on
the surface of the brain underneath the skull and microelectrode re-
cordings, where electrodes thinner than the width of the human hair
are inserted into the brain for the recording and stimulation of deep-
er brain structures (Schalk & Leuthardt, 2011). Brain activity can be
measured non-invasively via electrical potentials on the scalp using
electroencephalography (EEG) (Abiri et al., 2019), via magnetic field
changes using magnetoencephalography (MEG) (Paek et al., 2020),
and via metabolic processes related to brain function using function-
al magnetic resonance imaging (fMRI) (Sitaram et al., 2007), positron
emission tomography (PET) (Nutt, 2002), and functional near-
infrared spectroscopy (fNIRS) (Schalk, 2009).

In addition to degrees of invasiveness, the described sensor mo-
dalities can be distinguished by their temporal and spatial resolution.
Temporal resolution is the capacity of a method to detect changes in
activity over time, whereas spatial resolution is the degree to which a
given method can detect changes in activity by location (Friston,
2009). In the context of BCIs, temporal resolution refers to how pre-
cisely a method can detect exactly when an event in a brain occurred,
and spatial resolution refers to the precision of a method for detect-
ing exactly where an event in a brain occurred. Additionally, the

methods can be compared with respect to the degree of mobility they
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afford the subject. Mobility is highly relevant in the case of brain-
computer interfaces, as the usability of real-world deployments of
BCI applications would heavily rely on the ability of the user to move
their body freely. Table 1 illustrates how the non-invasive neuroim-
aging methods (EEG, MEG, fMRI, PET, and fNIRS) compare across

the three dimensions.

Table 1:
Method Temporal resolution Spatial Resolution Degree of mobility
EEG High Low Medium
fMRI Low High Low
fNIRS Low Medium High
MEG High Medium Low

OPM-MEG High Medium High
PET Low High Low

Note. Neuroimaging methods compared against the dimensions of spatial and

temporal resolution, and the degree of mobility.

Examples of BCI implementations include, but are not limited to:
brain-to-text communication via intracortical electrode recordings
which decode handwriting movement attempts from a paralyzed
individual into text (Willett et al., 2021), detection of drowsiness in
drivers using fNIRS (Khan & Hong, 2015), and control of various
external devices such as wheelchairs (Rebsamen et al., 2007), drones
(Christensen et al., 2019), and robotic limbs (Lebedev & Nicolelis,
2017) using EEG.

Currently, the most practical use of BCI systems is that of ena-

bling communication and control of devices for individuals living
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with a functional impairment. However, mass adoption of such tech-
nology is hindered by the difficulty of obtaining high-quality record-
ings in environments outside of a lab, the processing speeds of con-
sumer devices, and the complexity involved in building solutions that
are sufficiently generalizable to be adapted to individuals or do not
require expert understanding to set up (McFarland & Vaughan,
2016).

EEG-based BCls

EEG is often considered the most practical choice for BCI applica-
tions due to its low cost, high portability, and high temporal resolu-
tion (Abiri et al., 2019). EEG measures neural activity using elec-
trodes placed on a scalp via the flow of electric currents caused by
synaptic excitations of neuronal dendrites (Olejniczak, 2006). It is
often said that this is a “direct” measurement of brain activity, as op-
posed to fMRI or fNIRS which measure the activity via metabolic
processes in the brain. EEG does not pick up the activity of individu-
al neurons, but rather a synchronous activity of millions of neurons
that have similar spatial locations. The type of neurons that produce
the most EEG signals are pyramidal neurons, due to their alignment
and tendency to fire together (Kirschstein & Koéhling, 2009). The ina-
bility to pick up signals from individual or smaller numbers of neu-
rons is one of the reasons for the weaker spatial resolution of EEG.
Another reason for poor spatial resolution is that EEG records activi-
ty from the outer layer of the cerebrum, the cerebral cortex, and thus
does not have access to deeper brain structures. Signals captured by
EEG only account for around 5% of brain activity (Ball et al., 2009).
However, given that EEG is able to directly sample regional brain
activity at rates of 1 000 Hz or greater, it provides a high level of tem-
poral resolution. While activity in the deeper brain structures is be-

yond the reach of an EEG device, the signals in the areas such as the
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primary motor cortex, primary sensory cortex, temporal lobe, or oc-
cipital lobe can be reliably detected and utilized for control of exter-
nal devices (Guger et al., 2000).

The use of signals found in the cortical brain areas are often re-
ferred to as “paradigms” (Abiri et al., 2019), with each paradigm hav-
ing an established protocol for the development of a BCI application.
The EEG is first collected while the subject repetitively performs a
specific task related to the paradigm being investigated (e.g., visual or
imagery task). Typically, data is then preprocessed to improve the
signal-to-noise ratio and remove invalid trials, and is also used for
training and validation of the decoder. Finally, the subject can use the
BCI system by performing the task again, where the BCI system
translates the neural signal into commands for virtual objects or ex-
ternal prosthetics (Abiri et al, 2019). Figure 1 illustrates a typical
EEG BCI protocol. The most common EEG-BCI paradigms are mo-

tor imagery (MI) paradigms and external stimulation paradigms.
EEG-BCI paradigms

The external stimulation paradigm is based around the purposeful

Figurel:
: Signal processing
P : — Feature . Feature — Feature
reprocessing extraction selection classification
Raw EEG Control
data commands
EEG : Machine control H
acquisition .

A Feedback .
— P S :
H [RoZ] {b :

Note. A block diagram for a general BCI system



Canadian Undergraduate Journal of Cognitive Science 267
modulation of brain activity using outside signals - visual, auditory
(Shangkai Gao et al.,, 2014), or somatosensory (Yao et al., 2017). For
example, one of the more widely implemented BCI-enabled commu-
nication interfaces is a P300 Speller. P300 is an event-related poten-
tial, evoked in response to an external stimulus. P300 is thought to
reflect the contextual meaningfulness of the stimulus for the subject.
It is characterized by a large positive deflection peaking at approxi-
mately 300 ms after the presentation of the stimulus (Fabiani et al.,
1987). Farwell and Donchin (1988) were the first to describe a relia-
ble BCI communication system utilizing the P300 signal, called P300
Speller. The system presents a 6x6 grid with a character occupying
each cell. The subject focuses their attention on the character they
intend to spell, while each row and column of the matrix is highlight-
ed in a random sequence (Figure 1.1). Whenever the highlighted row
and column intersect at the subject's character of choice, a P300 re-
sponse is elicited. A decoder is then able to spot the signal, recognize
at which intersected character it was elicited and infer the subjects’
character of choice. One patient with late-stage ALS has used the
device for 4 to 6 hours a day for typing emails and other applications
and has reported the P300 speller as superior to his eye-gaze-based
system (Vaughan et al., 2006).

Another paradigm that makes use of external stimuli for the se-
lection of commands is called a steady-state visual evoked potential
or SSVEP (Vialatte et al., 2010). In this paradigm, multiple stimuli
(each of which represents a command and can be visual, auditory, or
somatosensory) are presented to the participant, each at a different
frequency, with frequencies varying from low (1-5 Hz) to high (75—
100 Hz). When a subject focuses their attention on a particular stimu-
lus (e.g., a flickering light) EEG frequency observed over the visual

areas of the brain is reliably correlated with the frequency of the re-
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Figurel.1:
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Note. The letter grid used for a typical P300 speller-based BCI. A row or column
flashes for around 100 ms every 200 ms. The participant focuses his attention on
one of the letters (for example, letter “D”) whilst wearing an EEG cap. Whenever
the row or column containing flashes (in this case, row I or column 4), a P300
response is elicited. The first row or the fourth column must flash multiple times
(eliciting P300 response multiple times) in order for the decoder to confidently
classify “D” as the participant’s letter of choice. (Figure reprinted from Krusienski
et al. (2008)).

spective stimulus (Kus et al, 2013) (Figure 1.2). Decoding which
command the subject is trying to select becomes possible by match-
ing the EEG activity pattern to the frequency of the stimulus repre-
senting the command. SSVEP is advantageous because it does not
require training, can be classified more reliably than event-related
potentials, and benefits from more commands due to the range of
frequencies for use (Abiri et al., 2019). Applications include control-
ling lower limb exoskeleton (Kwak et al, 2015), orthosis
(Pfurtscheller et al., 2010), and locked-in syndrome (Hwang et al,,
2017).
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Note. An example of a visual SSVEP interface panel used for the control of the
exoskeleton from Kwak et al. (2015). Each of the white dots is an LED flickering at
a specific frequency and represents a particular command. The subject focuses his
attention on one of the lights while wearing an EEG cap, the activity recorded in
the visual cortex is then correlated with the frequency of each of the lights. The
command whose respective flickering frequency correlates the most with the activi-
ty is then classified as being the intent of the subject.

Since external stimulation paradigms heavily rely on constant
and repetitive presentation of stimuli to the subject, subjects may
experience fatigue and may generally find their use difficult for long
periods of time (Chang et al., 2014).

Motor imagery paradigms, on the other hand, do not rely on ex-
ternal stimuli, but rather on the wilful, internal modulation of neural
activity. Using MI provides a unique way of interacting with hard-
ware or software that has the potential to feel natural and relevant to
the task being performed as well as being distinct from natural envi-

ronmental stimuli (such as noises, flickering lights, etc.).
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Motor Imagery

Motor imagery is a mental process of kinesthetically imagining
movements without the respective physical movement occurring
(Lotze & Halsband, 2006). One way to discern MI from visual image-
ry is to determine the “point of view” of the subject of the imaginal
experience. On the one hand, mental images can be experienced from
a third-person perspective, with the subject acting as a “spectator”,
watching themselves perform an action. One illustrative example is
the sport of climbing, where it is commonplace for individuals to
imagine an avatar ascending a specific route. On the other hand,
mental images can be experienced from a first-person perspective, a
process involving mostly a kinesthetic representation of the move-
ment, during which the subject feels as if they were executing the
movement. This type of imagery requires representing the process of
an action being executed (Jeannerod, 1995). Kinesthetic motor im-
agery can be experienced by remembering and/or preparing for a set
of precise movements, for example a drummer preparing to play a
specific, highly technical part of a musical piece. Motor imagery falls
under the type of kinesthetic imagery (Stinear et al., 2006).

Motor imagery gained its prominence as a research area due to
its relevance in motor learning—the process of acquiring or strength-
ening a skill through repetitive practice (Newell, 1991). During repet-
itive practice, the subject engages neural networks responsible for the
movement over and over again, strengthening the connections be-
tween the neurons through the process called Hebbian learning
(Hebb, 1949), or as its famous tenet goes: “Neurons that fire togeth-
er—wire together.” Hebbian learning in the brain as a physical pro-
cess is primarily facilitated by two neural mechanisms: long-term
potentiation (LTP) (Bliss & Lemo, 1973) and long-term depression
(LTD) (Artola et al, 1990). LTP and LTD influence the extent to
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which activity in a sending neuron leads to activation of a receiving
neuron, by influencing the efficacy of synapses or junctions between
neurons. LTP is a long-lasting potentiation (strengthening) of synap-
tic efficacy, while LTD is a long-lasting depression (weaking) of syn-
aptic efficacy.

Whilst physical practice is most vital for the acquisition and con-
solidation of new motor skills (Robertson et al., 2004), motor image-
ry is a well-assessed complementary practice for motor learning
(Schuster et al., 2011). The rationale is that imaginary movement po-
tentiates the activation of the sensorimotor system which leads to
strengthening of neuronal connections (Kraeutner et al, 2014;
Pfurtscheller & Neuper, 1997). Ml is used for motor learning in both
healthy populations (Dickstein & Deutsch, 2007) and for motor reha-
bilitation in patients (Malouin et al., 2013). This willful generation of
activity in the sensorimotor cortex by performing imaginary move-
ments is the foundation of the motor imagery paradigm in BClIs.

In the sensorimotor rhythms (SMR) paradigm, a subject imagines
kinesthetic movements of body parts such as the hands, the legs, the
fingers, the feet, the legs, the arms, or the tongue. Imagined move-
ment causes event-related desynchronization (ERD) and its opposite,
event-related synchronization (ERS), which is observed during relax-
ation. ERS and ERD phenomena are found mostly in Alpha (or mu, as
it is often referred to in the context of imaging sensorimotor cortex)
(8-12 Hz) and Beta (16-24 Hz) frequency bands (Pfurtscheller, 2000,
p- 26). Upon the imagination of a movement, a power reduction
(ERS) can be observed in the mu/beta , and a rise back in power
(ERS) when the movement ceases. As with physical movements, the
imaginary movements in the motor imagery paradigm are unilateral,
due the location and size of neural regions responsible for specific

movements differing, which leads to different signal characteristics,
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thus making it possible to distinguish MI for left- and right-hand
movements. When a movement of a unilateral limb is imagined, the
recorded activity at the contralateral side of the motor-sensory cor-
tex increases, while the activity at the ipsilateral side does not display
an increase in activity. This contrast between location-specific sig-
nals as well as contextual EEG activity is able to be leveraged for suc-
cessful classification of the user’s intent.

BCI systems within the motor imagery paradigm make use of
ERD/ERS events for an external application. Apart from allowing
individuals with impaired function to control, for example, external
limbs (Barsotti et al., 2015) or moving a wheelchair (Reshmi & Amal,
2013), MI-based BCIs are also often used for the purposes of neu-
rorehabilitation (Pichiorri & Mattia, 2020).

Classification Approaches
Traditional signal processing approaches

EEG has a low signal-to-noise ratio due to the electrodes measuring
brain activity at a microvolt level. This high sensitivity means that
along with cortical brain activity, EEG recordings capture many bio-
logical processes including eye blinks, heartbeat, muscle movements,
and respiration. The electrodes are also prone to interference caused
by electronic equipment, including the recording equipment itself
and proximity to electromagnetic fields like those generated electric-
ity supply lines. In addition, there are cross-channel correlations and
subject-specific patterns of activity (Altaheri et al., 2021). Hence, ade-
quate classification of imagery movements strongly depends on the
processing pipeline of raw EEG data, namely: preprocessing, feature
extraction, feature selection, and feature classification (Khosla et al.,
2020).

Usual preprocessing techniques include: notch (bandstop) filter-
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ing to remove power line noise at 50 or 60 Hz (region specific); high-
pass filtering for the removal of baseline drift; low-pass filtering to
smooth the signal; downsampling the data for quicker computation
and reduced memory storage; selection of specific electrodes de-
pendent on the performed task; referencing from specific electrodes
or the signal average from all electrodes; and band-pass filtering to
select frequency range(s) of interest.

Following preprocessing, EEG data go through feature extrac-
tion, feature selection and finally, feature classification where a pre-
diction of the intended movement occurs. Feature extraction is a
stage where meaningful information is extracted from the neural
data. It is often achieved using time-frequency approaches—due to
the non-stationary nature of EEG signals—and further improved via
spatial approaches that identify and weight channels with the highest
signal-to-noise ratio. The returned feature sets are of high dimen-
sionality, and statistical techniques such as Principal Component
Analysis (PCA) (Abdi & Williams, 2010) and Independent Compo-
nent Analysis (ICA) (Stone, 2002) are used for dimensionality reduc-
tion and feature selection.

Often, multiple techniques are used for each phase of extraction,
selection, and classification of EEG signals (Kevric & Subasi, 2017).
While high-performing, if these techniques were employed for appli-
cations requiring time-critical classification, the recurring complex
computations performed on the data would introduce prohibitively
high latency. Additionally, they would require expert assistance to
calibrate the decoder, as MI EEG data are prone to high subject spe-
cific variance (Zhang et al., 2021), which also contributes to the prob-
lem of achieving a generalizable or, at least, easy to calibrate classifier
for MI EEG signals. Thus, the classical signal processing approaches

are an obstacle for achieving an easily deployable BCI system that is
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able to perform accurate predictions of users intent in real-time.
Machine learning

Neural networks have been shown to achieve “end-to-end learning”
by learning complicated and latent features from large amounts of
data (Bojarski et al,, 2016), bypassing the need for manual feature
extraction, selection, and preprocessing. The promise of feeding raw
data directly into the neural network without intensive signal pre-
processing opens up both the latency and calibration bottlenecks for
real-time BCI use (Craik et al.,, 2019). Specifically, convolutional neu-
ral networks (CNNs) have become very popular due in part to their
success in image classification (Krizhevsky et al., 2012). Naturally, the
high dimensionality EEG data has been tackled with deep learning,
notably for previously mentioned visual-evoked responses (Cecotti &
Graser, 2010), Alzheimer’s classification (Morabito et al., 2016), de-
pression (Acharya et al., 2018), epilepsy prediction (Hussein et al.,
2019), and most relevantly, motor imagery classification (An et al.,
2014; Tabar & Halici, 2017).

Following the promise of end-to-end learning, deep learning for
motor imagery has experienced a rapid growth since 2017 (Altaheri
et al., 2021). Since then, multiple approaches regarding preprocessing
(or lack of it), input formulation, deep learning architectures, and
performance evaluation have been tried. Preprocessing for MI EEG
classification usually consists of selecting channels that contain the
most distinct MI features and subsequent band-pass filtering. More
than 79% of the studies reviewed by Altaheri et al. (2021), used all
EEG channels. However, most of these studies were not oriented on
online classification, where reduction of the volume of incoming da-
ta, process complexity, and computational time is a significant con-
sideration. Over 91% of the studies reviewed in the aforementioned

paper used a band-pass filter on the data to select for frequencies
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where the ERD/ERS events are observed, notably the mu (8-12 Hz)
and Beta (18-26 Hz) frequency bands. The band-pass filter also effec-
tively removes the power line noise (50 Hz) from the data.

Input formulation largely depends on the architecture of the
neural network and is usually one of the following four: raw signal
values, spectral images, topological maps, or extracted features. The
neural network is then trained on this input and judged by its ability
to correctly discern the class of the input data, which could be a bina-
ry outcome or a multi-class prediction. Classification performance of
a model is usually validated by using either the hold-out approach—
where a portion of the data that is not included in training is used to
validate predictions—or the cross-validation approach which repeat-
edly splits the data in different ways for training and validation. The
exact method of splitting and validating data varies by the type of
cross-validation. Trained models are then selected based on a specific
performance metric such as maximizing accuracy or minimizing the
outcome of a loss function. The selected model can then be used on
novel data for inference, meaning it is able to predict the class of data
outside the original dataset. Machine learning architectures
arepromising contenders as a method for effective and process-

efficient classification of motor imagery signals.
Present study

Whilst many have reported high-performing MI-EEG BCls, these
systems are confined to carefully controlled, noise-free, artificial en-
vironments, and are heavily dependent on expensive research-
appropriate systems that require expert preparation and configura-
tion (McCrimmon et al., 2016). Moreover, the classification is usually
applied on the complete period of performing the motor imagery
movement during the experimental protocol, which ranges around

four seconds. In a real-time scenario, this would result in a minimum
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latency of four seconds for the user, seriously inhibiting the usability
of the BCI system for general tasks and making time-sensitive inter-
actions impossible. For MI-EEG BClIs to reach a sufficient degree of
practicality for everyday use, they need to be easy to set up, low-cost,
robust, and most importantly, low-latency.

The main contribution of this study is the use and subsequent
examination of a lightweight convolutional neural network for the
real-time classification of EEG data with sub-second latency. Moreo-
ver, the EEG data is acquired in a naturalistic, interference-prone
setting, using a low-cost, dry-electrode EEG device, which sheds fur-
ther light on the accuracy and reliability of the BCI system for real-

world applications.
Methods
Participants

Two male volunteers (both right-handed, M = 30.0, SD = 5.0 years)

participated in the experiment and gave their informed consent.
Hardware and Software

Neural activity was recorded using a low-cost, open-source/open-
hardware EEG device Ultracortex Mark IV Headset'(OpenBCI, Inc.,
USA) with dry electrodes, connected to the OpenBCI Cyton and Dai-
sy biosensing boards (OpenBClI, Inc., USA). The cap followed a 10-
20 international electrode placement scheme. Fifteen electrodes cov-
ering the whole head were selected (Fp1, Fp2, F3, F4, F7, F8, T7, C3,
C4, P3, P4, P7, P8, O1, 02). EMG monitoring was performed using
three Skintact F301 foam solid gel electrodes (two signal electrodes
and one ground) plugged into the OpenBCI Daisy board. EEG Refer-
ence and ground electrodes were placed at the left and right ear
lobes. Figure 2 illustrates the placement of both EEG and EMG elec-

trodes.
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Offline Raw EEG and EMG data were acquired at a sample rate of
1000 Hz via a microSD-card plugged directly into the Cyton board
using a custom-built Python interface? using the BrainFlow API3. The
custom interface was required to send low level commands to the
board and configure pin settings for the EMG signal and grounding
and in addition, a modified Cyton firmware* was required to fix an

issue with capturing data above 250 Hz.

Figure 2:

Electrodes
@ Recorded (used)

. Recorded (dropped)

. Reference

' Bypassed for EMG

Note. Graphic representation of the EEG and EMG electrode placement on the

scalp and arm, as well as their use in classification.

!https://docs.openbci.com/AddOns/Headwear/MarkIV/
2https://github.com/zeyus/OpenBCI_Cyton_Library

3 https://github.com/brainflow-dev/brainflow

4 https://github.com/zeyus/BrainflowCytonEEGWrapper
5 https://github.com/zeyus/CogNeuroExam
Shttps://github.com/onnx/onnx
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Source code for the experiment, data collection, offline analysis,

model training, and online classification is available on GitHub.
Online classification with sub-second latency

Model training took place on an NVIDIA GTX1070 GPU with
CUDA 11.6, CUDNN v8.4.0.27, and PyTorch
1.12.0.dev20220507+cul16. After model training, the model’s
weights were frozen and exported in Open Neural Network Ex-
change (ONNX) format6, subsequently the pre-trained model was
loaded into a CPU-bound instance of the ONNX Runtime (ONNX
Runtime developers, 2021) and real-time streaming EEG and EMG
data were collected via the Cyton USB/Bluetooth dongle using the
custom interface at a sample rate of 250 Hz. Data from non-selected
channels were dropped, and the remaining data were resampled and

sent to the model for inference Figure 3.
Stimuli

The python package PsychoPy (Peirce et al., 2019) was used to pre-
sent the stimuli to the participants. The task was to perform imagi-
nary movements of clenching the right hand or resting. Visual cues
were presented to the participant before the beginning of a new trial
to ensure attention to the task. A purple arrow pointing to the right
was used as a visual cue to indicate that the participant should imag-
ine clenching their right hand, a purple arrow pointing upwards was
used as a visual cue to indicate that the participant should rest, simply

focusing their gaze on the arrow.
Trials and Experimental Protocol

Experimental protocol was largely adapted from Ma et al. (2020).
Each trial of the experiment began with a white circle (t = -3 s) indi-

cating the start of the trial, followed by a red circle 2 seconds later (t
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= -1 s), alerting the user about the upcoming stimuli onset. Att = 0's,

either the right or upward pointing arrow was presented indicating
the requirement to either clench the right hand or to rest, for the du-
ration of 4 seconds. The participants were told to perform the imagi-

nary movement until the arrow disappeared from the screen. The
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importance of imagining single, continuous movement for the total
duration of 4 seconds was stressed to the participants. At the end of
the trial, a short break of 1 second followed. A schematic representa-
tion of the experimental protocol can be seen in Figure 4. The session
lasted until 30 trials of each of the 3 tasks were completed, which was
approximately 12 minutes. 3 sessions for Subject #1 and 4 sessions

for Subject #2 were recorded over multiple days.
Procedure

The participants were seated in a comfortable chair and instructed
about the protocol. The importance of performing a kinesthetic im-
aginary movement was stressed. To avoid motion-related artifacts,
the participants were asked to keep any type of movements while
going through the experiment to a minimum.

Following the instructions, the EMG sensors were placed on the
participants arm, namely two sensors on the inner left side of the
right forearm (flexor digitorum superficialis) and one ground sensor
on the right biceps (biceps brachii). The EMG electrode locations

were gelled before the placement of the sensors. The dry-electrode

Figure 4

Stimulus

Note. Schematic representation of the experimental protocol.
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EEG cap was placed on the participants head with the Cz electrode
socket placed on the vertex of the head. Clip electrodes were used for
the reference and ground electrodes, placed on ear lobes, which were
cleaned with alcohol and gelled. A visual inspection of the quality of
the EEG signals was done using the OpenBCI GUL If any of the
channels were shown to capture the signal poorly, the electrodes cor-
responding to those channels were gently turned until the quality of
the signal was acceptable. Throughout the whole mounting proce-
dure, the participants were repetitively asked whether they experi-

enced any significant discomfort in relation to the procedure.
Data Pre-Processing
Assessment of muscle activity during trials

EMG activity was recorded along with EEG to monitor the amount
of activity exhibited by the flexor digitorum superficialis muscle
which is used for fist-clenching. Four prior experimental sessions
(two per subject) were conducted which contained a physical fist-
clench condition to compare the EMG signal of intentional physical
movements with potential sub-activation levels of imagined move-
ments. Visual inspection of EMG data from MI trials indicated that
muscle activity was much weaker in imaginary movement trials

(Figure 5).
Channel selection

Data from electrodes covering the sensorimotor cortex, namely, C3,
C4, P3, and P4 were selected for the purposes of classification of mo-
tor imagery movements. These channels were deemed most im-
portant in capturing event related desynchronization/event-related

synchronization phenomena discussed previously, via the visual in-
spection of the recordings. Figure 6 below illustrates average activity

from C3, C4, P3, and P4 channels during rest vs. right hand condi-
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tions for one participant during one of the recording sessions. The
difference in activity can be distinguished most clearly in the two
plots for the C3 channel, which is expected as the C3 channel covers
the area of the sensorimotor cortex responsible for the movement of
the right hand.

As previously noted, over 79% of studies reviewed by Hoodis
used data from all electrodes for classification. However, multiple
studies have achieved good accuracy using eight channels or less (Lun
et al., 2020; Yang et al., 2020; Yohanandan et al., 2018). As this study
heavily emphasizes the importance of sub-second latency in classify-
ing motor imagery movements, only the essential channels are used
to minimize the amount of data required for online processing. Fig-
ure 2 illustrates the placement of EEG electrodes, as well as the place-

ment of EMG sensors mentioned above.
Band-pass filters

EEG preprocessing pipeline for MI classification often involves fre-
quency filtering with a bandpass from 8-32 Hz or similar, the upper
passband limit removes line noise from single-phase AC electricity
(50 Hz or 60 Hz depending on region) and the lower passband limit
helps reduce signal drifts which can be caused by changes in subject
skin conductivity. Although, there is research suggesting that there is
loss of relevant signal in cases of high pass (lower passband) values
above 0.1 Hz (Tanner et al, 2015). In many cases, filtering can im-
prove the signal-to-noise ratio, though the process itself can also in-
troduce artifacts such as passband ripple, and thus there are many
different approaches to identifying the important aspects of a signal,
including signal decomposition methods like independent compo-
nent analysis (ICA) or ML. In the case of MI classification, bandpass
filtering narrows the data to the frequency where the ERD/ERS sig-

nal is observed most saliently. However, as EEGNet—which the neu-
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Figure 6:

Real-Time Classification of Motor Imagery

Note. Two MI events averaged across all trials for one session of one participant as

displayed by the four sensors (C3, C4, P3, P4) used in the training of the neural

network.
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ral network proposed below is based on—includes temporal and spa-
tial filters, no frequency filters are applied to the EEG data. Moreo-
ver, for real-time, online classification, any frequency-based signal
filtering is severely limited by the window size of the data that is be-
ing classified, and in our case, the upper window limit of 0.795 s
(0101 samples at 128 Hz) makes the introduction of artifacts ex-
tremely likely. Reducing the amount of preprocessing also has the

important effect of increasing the processing speed of classification.
Neural network architecture

A multi-layered Convolutional Neural Network (CNN) architecture
(Figure 7) was implemented based on EEGNet (Lawhern et al., 2018)
from a modified version of DN37(Kostas & Rudzicz, 2020b, p. 3). All
model fitting was performed with Stochastic Gradient Descent
(SGD) optimization with momentum, minimizing the two-category
cross-entropy loss (Figure 8). A wide variation in hyperparameters
were tried to find the optimal values for both within-subject and be-
tween-subject models, and while certain parameters such as increas-
ing the number of temporal and spatial filters had a significant effect
on increasing training accuracy, this was likely due to overfitting as
the validation accuracy did not improve, Table 2 lists the hyperpa-
rameters used for the best performing model. Due to EEGNet’s ap-
plication of temporal and spatial filters to the EEG data, we found
that the application of various preprocessing techniques (such as
windowed FIR bandpass, notch filtering, and average signal subtrac-
tion) did not significantly improve classification accuracy. Addition-
ally, strided EEGNet, BENDR (Kostas et al., 2021), and TIDNet
(Kostas & Rudzicz, 2020a) based architectures were trained on the
data to compare the performance of different networks for classifica-

tion, both with and without preprocessing, with classification perfor-

7 https://github.com/zeyus/dn3
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Figure 7:
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mance barely exceeding random chance level.

Although online classification is only viable with a high perform-
ing model, due to our goal of making a sub-second MI classifier we
implemented an online real-time inference pipeline to assess latency
and feasibility. The EEGNet model used resulted in 1 954 trainable
parameters (in contrast the BENDR model had 58 284 091 trainable
parameters and TIDNet, 608 818 trainable parameters), this reduced
number of parameters along with high classification accuracy in
benchmarks makes it an ideal architecture for targeting consumer
devices which most likely do not have a dedicated GPU/TPU and
large amounts of RAM. Minimum continuous latency of [window
size] + 205 ms (latency overhead from data transmission, inference,
and preprocessing) was consistently achieved with a sliding window
step size of 1 sample (meaning 128 predictions/s at 128 Hz sampling
rate) on an Intel Core i5-4690K CPU @ 3.50 GHz. These results indi-
cate that online, real-time classification is possible with consumer
devices, and finding the narrowest window that maintains high clas-
sification accuracy further reduces latency. In our design, the over-
head meant that to achieve sub-second online inference, the maxi-
mum classification window [window size] was restricted to 0.795 s.
This study investigates an even narrower, 0.5 s temporal window for

the purposes of classifying motor imagery.
Validation of the network

Prior to testing the capacity of the neural network to predict motor
imagery vs. rest behaviours with sub-second latency, the network’s
baseline prediction capability was tested on data epoched usinga 2 s
temporal window and compared to the performance of an existing
MI-EEG BCI. Yohanandan et al. (2018) reported a mean classifica-
tion accuracy of 71.09% across 7 participants using a 2 second tem-

poral window, their neural network achieved a mean 63.34% perfor-
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mance across 2 participants using 2 s temporal window. Whilst the
accuracy achieved here is lower, Yohanandan et al. (2018) used twice
the amount of sensors and a sophisticated neurofeedback routine to
improve the capability of participants to perform detectable imagi-
nary movements. Thus, our EEGNet network’s prediction capability
was deemed acceptable for investigating the ability to classify motor

imagery using a 0.785 s temporal window.

Results
Table 2:
Parameter Value

Dropout Probability 0.25
L2 weight decay 0.01
Base learning rate 0.01
Batch size 16
Epochs 500
Kernel size 32
Spatial filters per temporal convolution (D) 2
Temporal filters (F1) 8
Pointwise filters (F2) 16
Pooling 2

Note. Best performing hyperparameters for both within- and between-subject

models
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Classification accuracies for a 0.5 second temporal window for the
two participants were 54.8% and 57.1% respectively for subject-

dependent models, and 54.1% for the subject-independent model.
Discussion

Motor imagery-based brain computer interfaces hold great promise
for enabling individuals with impaired function, diagnosed with con-
ditions such as ALS (Hosni et al., 2020), cerebral palsy (Taherian et
al,, 2017), or muscular dystrophy (Bao et al., 2021) to interact with
the world around them. In contrast with other BCI paradigms, these
systems do not rely on external stimulation, but rather on detecting
neural activity produced by the user at will, making them easier to
use for prolonged periods of time and easier to set-up. While classifi-
cation accuracy is clearly important, a survey carried out by (Huggins
et al., 2015) shows that speed and ease of use are as important for
patients interested in using BCI systems.

In this work, we evaluated the possibility of using a practical
EEG for real-time classification of rest vs. motor imagery move-
ments with sub-second latency. The data were collected using a low-
cost, dry-electrode Ultracortex Mark IV Headset by OpenBCI. The
setup of this EEG device does not require expert assistance, making it
suitable for at-home use. A lightweight, deep neural network was
constructed using EEGNet, a popular compact convolutional neural
network for EEG-based brain-computer interfaces. The built system
was able to return predictions in real-time with less than a 1-second
delay, but the capacity of the classifier to predict events with high
accuracy was not achieved. Since the data were acquired in a natural-
istic, interference-prone environment, this study also showcases the
potential for the proposed BCI system as a robust solution.

Whilst the visual inspection of the signal hinted at the possibility

of differentiating between rest vs. MI conditions using a sub-second
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temporal window, the neural network could not consistently distin-
guish the behaviours. As the plots of the signal were taken from a
single session, the cause might be the variability between sessions,
which was previously reported in other works (Altaheri et al., 2021).

Additional improvements to classification accuracy could be
achieved via a denser sensor coverage of the sensory-motor cortex.
Most MI-EEG BCI studies utilize data from over 8 electrodes for
classification purposes (Altaheri et al., 2021). This study used signals
recorded from C3, C4, P3, and P4 electrodes, alternatively, Cz, CP1,
CP2, CP5, and CP6 electrodes could be directly added to the Ultra-
cortex Mark IV Headset used in this study.

Limitations and future work

One obvious limitation of the study was its small sample size of two
participants, which is not enough to reliably determine whether the
proposed approach would generalize to larger populations. Training
the neural network on more within-subject and between-subject
data would give the network a broader range of activity to pick out
the most relevant features of the signal and to give less weight to
noise that is less consistent across trials.

Another obvious limitation that needs to be addressed is the low
accuracy of the classifier. In a real-world scenario, this can lead to
misinterpretation of user intentions, leading to incorrect responses
from the system and a decrease in user satisfaction, as well as an in-
creased risk of errors that could be potentially dangerous for the us-
er.

In the section above, the possibility of adding additional sensors
with the purpose of covering the sensorimotor cortex more densely
was discussed. However, the 3D printed headset by OpenBCI used in
the study could not facilitate the addition of the following channels:
C1, C2, CP3, CP4, and CPz, which could enhance the targeted ERD/
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ERS signal in the acquired data. An alternative headset could be de-
signed and developed for the sole purpose of MI classification, which
would include sockets for the sensors listed above. Such additions
could increase the network classification accuracy by providing more
relevant data.

An attempt at improving classification accuracy could be made
via moving the temporal window forward in increments, up to
around 0.4 s after the stimulus onset. As seen in Figure 5, when the
experimental protocol included a clench condition, the EMG activity
did not increase up until around 0.4 s after the stimulus onset, mean-
ing it took approximately 0.4 s for participants to process the stimu-
lus, start acting on it, and subsequently move their muscles. It can be
therefore assumed there might also be a delay in the MI condition,
minus the latency of signal propagation from the brain to the hand.

The session-dependent variability could be addressed via more
consistent performance of the kinesthetic imagery of the required
movement. Previous studies on motor imagery have utilized the
KVIQ-10 questionnaire (Malouin et al., 2007) to ensure that partici-
pants are able to perform the task correctly and consistently, with
experimenters explaining and showing the movements prior to the
assessment. Alternatively, a neurofeedback training routine akin to
that described by Hwang et al., 2009 could be implemented to help
participants accurately and consistently perform imaginary move-
ments by presenting them with real-time brain activation graphs.

Whilst this study implemented a visual diagnostic of EMG activi-
ty across the two conditions to ensure no muscle activation was pre-
sent during imaginary movements, a more rigorous and automatic
rejection procedure on a per-trial basis could be implemented akin to
that by Peterson et al. (2022). This would further ensure that the sig-

nal in acquired data is evoked by purely imaginary behaviour, allow-
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ing for fewer false positives in the case where the user would clench

their right hand.
MI classification in non-stationary settings

As noted at the beginning of the paper, for BCIs to be of value to a
larger audience, they need to be usable in non-stationary scenarios.
EEG has been proven effective in the classification of multiple types
of signals with a high temporal resolution. Unfortunately, it suffers
from a high degree of immobility. Motion-related artifacts are one of
the most common causes of noise in EEG data. Two other, relatively
recently developed methods, namely functional near-infrared spec-
troscopy (fNIRS) and optically-pumped magnetometers for magne-
toencephalography (OPM-MEG) are perfectly suited to tackle this
problem. Although fNIRS has a relatively low degree of immobility,
its temporal resolution is rather low, meaning that high online classi-
fication speed will be difficult to achieve due to the limitations of the
technology behind the method. OPM-MEG, however, has an excel-
lent temporal resolution, and benefits from better spatial resolution
than EEG, but is more costly (Boto et al., 2016). Importantly, studies
have shown OPM-MEG to reliably record neural activity from mov-
ing individuals (Boto et al., 2018). Thus, research on the classification
capacity of motor imagery in non-stationary settings using OPM-

MEG is deemed promising.
Conclusion

This study demonstrated a successful implementation of an EEG-
based BCI system able to perform real-time, binary motor imagery
classification with a sub-second prediction latency. A low-cost EEG
device from OpenBCI was used on data that were acquired in an in-
terference-prone environment, indicating the deployability of the

system for real-world applications. Sub-second prediction latency
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was achieved using a light CNN based on EEGNet, minimum pre-
processing of the raw EEG data, and a temporal window of 0.785 s
from the onset of the stimulus. The predictability of motor imagery
vs. rest behaviours using a temporal window of 0.785 s was exam-
ined. Subject-dependent classification accuracies were 54.8% and
57.1% for the two participants, respectively. Cross-subject classifica-
tion accuracy was 54.1%. Future work includes evaluating the system
using data from more sensors and from participants trained in motor

imagery by means of neurofeedback or expert training.
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