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230 Deinforcement Learning
Abstract

An important challenge of human decision-making is determining via trial
and error which options maximize reward and minimize punishment. In
computer science, this problem is known as reinforcement learning (RL),
and particular RL paradigms, such as the advantage actor-critic (A2C), have
been the subject of extensive research (Niv, 2009). Current RL algorithms
are insufficient representations of the brain, despite the fact that this biolog-
ical analogy has historically advanced the field of computer science (Tassa et
al,, 2018). When mimicking dopamine pathways, RL often disregards one of
the most potent biological signals: pain. The absence of a reward signal, also
known as a negative signal, is frequently interpreted as being equivalent to
punishment (Schultz et al, 1997). However, the biological mechanisms that
interpret, transmit, and permit pain in the body contradict this assertion.
We argue that people avoid unfavourable situations more rapidly if they
learn through pain as opposed to through a lack of reward. Therefore, we
propose that adding pain into current RL models will not only allow algo-
rithms to converge more quickly, but also cause behaviour to become more
safe, sophisticated, and generalizable. This work examines the historical
connections between RL and neuroscience, synthesizes neuroscientific un-
derstandings of pain, and proposes refinements to current biologically in-

spired techniques for incorporating pain into RL algorithms.

Keywords: machine learning, reinforcement learning, neuroscience,

cognitive science, psychology.
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Introduction

The history of reinforcement learning (RL) is indelibly wound with
the mathematical foundations of neuroscience. Neuroscience has
much to offer computer science, given that the brain is one of the
most flexible, adaptive, efficient, and intelligent learning paradigms.
This long-standing relationship has yielded significant benefits, but
more multidisciplinary effort is required to reach the full potential of
applications to computer science as neuroscience advances.

Richard Sutton, who was trained in both psychology and com-
puter science, created the "Temporal Difference Learning’ (TD Learn-
ing) algorithm in the 1980s to explain the neuronal response to vio-
lated expectations. This marked the beginning of the intertwined
history of computer science and neuroscience. The discrepancy be-
tween the predicted and actual reward is the definition of prediction
error. TD Learning asserts that learning occurs through prediction
error. The strong similarity between dopamine firing rates and the
reward prediction error (RPE) signal was then described by Wolfram
Schultz and colleagues in 1997.

Schultz demonstrated that when monkeys get an unanticipated
reward, their brains respond with an influx of action potentials, often
known as a phasic firing pattern (Schutlz et al., 1997). Nonetheless,
the phasic pattern disappears when the incentive is anticipated.
These results demonstrated that TD error (the difference between
the predicted and actual firing rates) was stored in the spiking pat-
terns of dopaminergic neurons.

At the same time, developments in reinforcement learning initi-
ated the use of TD error to update the weights of neurons in artificial
neural networks. In this approach, reinforcement learning has creat-
ed unique optimization algorithms that mimic human-like learning.

Popular algorithms such as actor-critic reinforcement learning con-
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tinue to rely on TD error. Given the significance of programmatic
algorithms that replicate ancient biological brain algorithms, it is im-
perative that new RL paradigms continue to emerge. To date, the
brain is more generalizable than any known learning algorithm; we
have much to learn from studying it. Thus, we aim to improve the
performance of reinforcement learning algorithms by upgrading
models that learn from both pain and reward, with our implementa-
tion based on a detailed evaluation of the various neuroscience stud-
ies on pain pathways. We term the general idea of properly adding
pain to RL using biological justifications "Deinforcement Learning".
By comparing and contrasting Deinforcement Learning with stand-
ard RL methods, we intend to demonstrate the significance of learn-
ing from negative incentives in the building of more resilient and

effective RL models.
Roadmap

We begin with a review of dopaminergic learning and reinforcement
learning in the brain. We then pull concepts from psychology to dif-
ferentiate between various types of reinforcement and punishment,
as well as consider which ones are relevant to our ultimate theoreti-
cal implementation into RL. The pain route is then compared to the
previously outlined dopaminergic learning pathway. In conclusion,
we synthesize these ideas to present a high-level RL framework
based on the MaxPain algorithm while incorporating a biologically-

inspired pain signal, distinct from a negative reward signal.
Dopaminergic Learning

Dopamine is a neurotransmitter with a reputation for its reward and
pleasure qualities in popular culture. Recent studies indicate that do-
pamine is also implicated in pain, which may involve the remodeling

of the reward circuitry (Markovic et al., 2021). Approximately 90% of



Canadian Undergraduate Journal of Cognitive Science 233

7 ,
Prefrontal Striatum
| cortex

’
Meso-cortic pathway

Meso-limbic pathway 5

/
Nigrostriatal pathway

Figure 1. The mesolimbic pathway shows the dopaminergic neurons made in the
ventral tegmental area projecting to the nucleus accumbens. (Arias-Carrién et al.,
2014)

dopamine producing neurons are in two areas of the midbrain nuclei
called the substantia nigra pars compacta (SN¢) and the mesolimbic
ventral tegmental area (VTA) (Arias-Carridn et. al, 2014). These neu-
rons project to the nucleus accumbens (Naci), which is the reward-
related dopamine site. Blocking the dopamine pathway to NAc de-
prives the rewarding effects.

In the early 1950s, scientists discovered the significance of the
VTA region by observing the effects of electrical stimulation to cer-
tain regions of the brain in rats. When electrical stimulation in the
VTA was followed by a certain task such as lever pressing, rats re-
peatedly executed that action (Olds & Milner, 1954). The rats ended
up pressing on the lever 2000 times per hour when they learned that

this specific behaviour reliably leads to an electrical stimulation. In
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this case, the action of lever pulling is followed by the electrical stim-
ulation, thus the stimulus is the “reward”. Olds and Milner elaborate
on the concept of reward as follows: “In its reinforcing capacity, a
stimulus increases, decreases, or leaves unchanged the frequency of
preceding responses, and accordingly it is called a reward, a punish-
ment, or a neutral stimulus” (Olds & Milner, 1954, p. 419). Recent
experiments in humans undergoing deep brain stimulation (DBS) for
Parkinson’s show similar results. After participants learned that a
certain task was followed by electrical stimulation of the SNc, an area
with abundant dopaminergic neurons, they repeatedly performed
that task, soon even without the stimulus (Perelman School of Medi-
cine at the University of Pennsylvania, 2014).

Dopaminergic neurons (DA) can fire in two distinct patterns in
response to varying stimuli: phasic and tonic activity. Phasic activity
refers to a burst of action potentials firing in a short period of time,
with a rate of up to 20 Hz. In contrast, tonic activity indicates a
steady firing rate of around 5 Hz. Tonic activity recorded in monkeys
implies congruence between actual and expected reward, while pha-
sic signal indicates a component of surprise and mediates a predic-
tion error during learning (Schultz et. al, 1997). As a result, dopamin-
ergic reactions diminish as learning and estimation of rewards pro-
gress. Likewise, the phasic firing activity decreases following the de-
livery of the reward. DA might indicate the difference between the
anticipated reward and the actual reward. Though the complete neu-
rological effects of dopamine, such as tonic firing pattern effects,
have not yet been integrated into reinforcement learning models,
contemporary improvements to reinforcement learning are based on
the understanding of the phasic dopamine response (Beeler et. al.
2010). By comprehending the phasic and tonic expressions of dopa-

minergic neurons, we can inform the future direction of action selec-
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tion in models for temporal difference reinforcement learning.
Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning in-
volved with choosing optimal policies, state value estimates, or both
to optimize an agent’s selection of the most rewarding action in a
given environment. RL has been used by companies such as Deep-
Mind to train humanoid and non-humanoid physical models to walk,
run, jump, and play games (Tassa et. al, 2018). It tends to perform
best in scenarios where there are complex states and decisions are
plentiful, not dissimilar to our own environment. The advantage ac-
tor-critic (A2C) RL model employs TD learning to adjust its reward
predictions through time, analogous to how humans learn through
classical and operant conditioning (Niv, 2009). We have chosen to
study A2C because it contains the most straightforward implementa-
tion of advantage. Before exploring the relevance of the "advantage"
variable and its linkages to reward prediction error (RPE) in the
brain, it is crucial to differentiate between the actor and critic com-
ponents.

The actor is (often) a neural network which learns policy r pa-
rameterized by J, that is a function of state s. In other words, a policy
determines which action should be taken in a given state and this
choice is influenced by the internal values of J (in this case the neural
network weights). Policies can be tuned to maximize reward (as is the
case with A2C), or achieve a goal parameterized as a function of that
reward. Actors in A2C are stochastic by nature, meaning they output
a probability distribution for taking an action in the action space
based on the current state (Geron, 2019). This has high level parallels
to how we as humans interact with our environment. We consider
the “state” of the world around us and then “act” to maximize some

reward tied to a goal. For example, when you decide to take action
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A" to walk your dog, one might think of this as applying your inter-
nal policy (7) to the state s, wherein your dog is barking at the door
wanting to go for a walk. You have, in this example, tuned your inter-
nal weights ¢ so that your policy outputs the action "A" of dog walk-
ing when given the state “s” of your dog barking. In many cases, the
actor is a deep neural network with input dimensions being equiva-
lent to the dimensionality of the state, and the output dimensionality
being equivalent to that of the action space. Actions selected by the
actor are taken in the environment, physical or simulated, and they
will receive a scalar reward for taking that action. The actor’s weights
are updated with the critic’s weights along the “advantage” variable,
which will be discussed in a later section.

The critic network in A2C is more abstract. Its purpose is to ap-
proximate the function V' (s). This function returns the overall value
of being in a state s, given a policy 7. It is equivalent to the expected
return of starting in state “s” and following policy 7 thereafter (return
in terms of discounted rewards) (Mnih et al., 2016).

Building upon the dog walking example; assume two separate
states Sj.g and $,, .. I these states, your dog is barking, and you
have a leash or do not have a leash respectively. Say you do not have
it and decide to walk the dog anyways (following policy 7 where you
walk the dog if it is barking). It runs away from you and now you
have no dog, which is a terrible situation to be in. If you had the
leash, you would walk your dog without incident and your situation
is overall better. The “value” of the state s,y is greater than the
“value” of the state s, .., because after following policy 7 in both of

those states one led to ruin and the other was just fine.

oo
n(s) = EnfRt[st = sf = En{Xyr(st+k+1,Qt+k+1)[st = s/
k=0
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In most cases, the "perfect" V function shown above is incomput-
able. Such is the case when we do not have access to the rewards for
any given state, which we do not when we do not have a model of the
environment. V (s) is, however, commonly estimated by another deep
neural network: in our case the critic. The input of the critic is the
state, and the output is a scalar estimate of the value function. The
critic is important because the value function it estimates is used in
the calculation of the crucial “advantage” variable which is then used
to update the weights of both itself and the actor. The actor, as dis-
cussed before, is the driving force behind the model’s decision mak-
ing. A better performing actor means a better performing network.
The following sections explore the relevance of extending the
synergy between reinforcement learning and dopaminergic learning

beyond reward-based learning.
Dopaminergic Influences on Actor-Critic Systems

Temporal Difference learning is the framework upon which actor-
critic updates are based, and TD error calculations in RL are done
with the use of the advantage variable; the advantage can be broken

down to its constituent parts below:
A = r(sp ap)+ }/V (st+1) - V (SY)

Assuming the agent just took an action and has moved to a new
state: (s, Q,) is the reward given for taking that certain action in that
certain state. Reward is often given by the environment after an ac-
tion is taken and not model-intrinsic. The yV (s,,,) term represents the
estimated future discounted rewards starting at the new state the
agent has just entered. Finally, the V (s) term is the estimated value
function for the state the agent was just in before acting. Combining
the first two terms, r(s,a,) + yV (s,,,), we get the reward the agent re-

ceived for taking an action in its previous state plus the discounted



238 Deinforcement Learning

predicted value of the agent’s current state. We call this the TD Tar-
get. Recall that the critic network is being trained to provide precise
estimates of V(s). To train the network with backpropagation, we
need some ground truth to understand how well the model predicted
the V function for this timestep.

The TD Target contains the ground truth in the form of r(s, a,). V
(s,) is subtracted from the TD target, and the difference between these
two is the TD Error. The term "error" refers to the discrepancy that
exists between the rewards that were actually gained and those that
were estimated to be obtained. Note that the yV (s,+ 1) term is partially
nullified by the tail end of the V (s) term, since this value function
contains discounted value predictions for future states as well
(Watabe-Uchida et al., 2017). The worse the prediction of V (s) by the
critic, the further from zero the advantage is, and vice versa. This is
why (A?) is the critic loss in an A2C network: squaring the advantage
allows us to treat negative and positive TD Error equivalently while
preserving the differentiability of the function and advantage is an
appropriate measure of how well the network is doing at approxi-
mating V (s,). The actor’s loss is also scaled by the advantage, but the
calculation of loss for a stochastic model is beyond the scope of this
paper.

Since TD learning lays the groundwork for calculating advantage
in actor-critic systems, it stands to reason that A2C weight updates
are linked to dopaminergic learning in the brain. In the case of RPE,
as more stimuli are experienced by the organism and dopaminergic
learning occurs (see Dopaminergic Learning section), the RPE ap-
proaches zero. This means the organism has learned how to correctly
predict the reward given its state (Schultz et al., 1997). Just as RPE
lowers while an organism learns to predict reward, the advantage

variable in an actor-critic system lowers as the critic learns to esti-
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mate V (s).

If no reward is present but reward is predicted, then dopamine
activity is heavily depressed which causes updates to the organism’s
“value estimation function”. However, an important distinction needs
to be drawn between the lack of a reward and a punishment. In RL,
negative rewards stemming from a state-action pair are seen as
“punishment” for a model. Initially, this seems accurate. Value up-
dates propagate through a network, telling the agent that this state is
not as valuable as it initially estimated. However, if we
consider on a high level the effect of pain, we see that there is a large
difference in how organisms react to pain versus negative reward. If
a child puts their hand on a hot plate, they are unlikely to do it again,
effective immediately. An A2C agent would perhaps place its hand on
the hot plate thousands of iterations under the guise of “exploration”.
The result: slow model convergence and/or unsafe actions, experi-
enced by almost all modern reinforcement learning algorithms
(Ghiassian et al., 2020). Learning for these models can be made more
efficient by recognizing these fundamental differences in learning

mechanisms.
Operant Conditioning

In psychology, operant conditioning explores how humans learn and
displays the cognitive and behavioural differences in learning from
positive stimuli, negative stimuli, and lack thereof (Grison & Gazza-
niga, 2019). While operant conditioning is criticized as an overly sim-
plistic view of human learning, it serves to differentiate between neg-
ative reward and pain. In operant conditioning, response cost punish-
ment describes the removal of a positive stimulus as opposed to aver-
sive punishment, or the addition of a negative stimulus.

Numerous operant conditioning experiments demonstrate the

differences between aversive punishment and positive reinforcement
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(Gershman, 2015; Kubanek et al., 2015; Steel, 2016). These findings
imply that there is a behavioural, and consequently, a neurological
difference in aversive punishment and reward, and also between re-
sponse cost punishment and aversive punishment. Consider a child
with an obsessive desire to climb trees. Their parents may warn them
about the dangers of falling and perhaps take away their video game
privileges as a consequence for climbing (response cost punishment).
However, it is likely that the stubborn child will continue climbing
until they fall and break their leg. The painful broken leg (an aversive
punishment) is a much faster and stronger conditioning response
than losing gaming privileges. In other scenarios, such as doing
homework and getting a problem wrong, aversive punishment is far
less effective than response cost, as it may deter the child from at-
tempting the homework in the first place. It is evident from these
psychological principles that both types of punishment are required
for efficient learning.

As our current concepts of pain in traditional reinforcement
learning are based solely on reward, we only observe the equivalent
response cost punishment and positive reinforcement without any
use of aversive punishment and negative reinforcement. Next sec-
tions explore the neuronal differences in these phenomena (reward

and pain) in greater depth.
Neurological Pain Pathways
Neurological Pain Pathways in the MaxPain Model

In this section, we examine the neurological evidence of dissociable
processes in the prediction of punishment in action systems. In light
of these findings, we examine a recent technique termed "MaxPain"
that uses an RL framework to strike an equilibrium between punish-

ment and reward prediction (See Discussion: Existing Literature and



Canadian Undergraduate Journal of Cognitive Science 241

Addition Removal
8
& Positive Reinforcement Negative Reinforcement
a addition of positive stimulus remaval of negative stimulus
b increases desired behavior increases desired behavior
- RL equivalent: + reward
E
5
E Aversive Punishment Response Cost Punishment
2 addition of negative stimulus remaval of positive stimulus
2 decreases undesired behavior decreases undesired behavior
] RL equivalent: - reward
]
-]
a

Figure 2. A grid showing different operant conditioning punishment/reward de-

lineations and what they mean, along with their RL “equivalent.”

MaxPain). Several studies corroborate the MaxPain algorithm’s cen-
tral tenet that positive and negative reinforcement have distinct but
complementary effects on learning and ultimately converge in the
brain’s striatum. Recent research indicates that it is capable of distin-
guishing between pain/punishment and penalty omission learning
rates when utilizing TD-learning models to represent behaviour dur-
ing an avoidance learning task (Elfwing et al, 2017). In addition,
there is mounting evidence that the decision-making processes of
animals incorporate separate reward and punishment systems, call-
ing into question the fundamental validity of this approach. These
results not only give a theoretical foundation for understanding pun-
ishment in the brain in both health and sickness, but they also under-
score the necessity for independent punishment prediction in RL.
While it is true that pain can activate regions of the brain involved in
our reward circuitry, additional variables impact pain perception and
should be researched to improve the current simplified model
(Schmidt et al., 2002).
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Basic Circuitry of Pain

The mesolimbic reward circuitry, including VTA-to-NAc dopamin-
ergic projections, modulates pain. Dopaminergic neurons produced
in the ventral tegmental region project to the nucleus accumbens
through the mesolimbic route (Russo et al, 2013). In rodents, pro-
longed pain triggers dopamine release in the NAc and painful events
can rapidly excite the dopaminergic neurons in the VTA (Schmidt et
al., 2002). Furthermore, the spinal cord delivers afferent nociceptive
pain signals to the brain. The thalamus communicates with the main
somatosensory cortex (S1, S2), the anterior cingulate cortex (ACC),
and the insula. Similarly, the basal ganglia gets signals from the
amygdala (Bushnell et al., 2013). A visual representation of the dis-
tinct differences in the reward and pain pathways are summarized in
Figure 3 below.

To examine the neurological basis of RL in the human brain, re-
searchers rely on functional magnetic resonance imaging (fMRI),
which permits the non-invasive monitoring of neural activity corre-
lations. Temporal difference models reflect neurophysiological data
like fMRI scans, and Pavlovian reinforcement learning works in a
way that is comparable to reinforcement learning (Niv, 2009). Inves-
tigations of the neural circuit employing fMRI on avoidance revealed
that action learning may be properly represented using basic tem-
poral difference action-learning models (Sutton, 1988), with consist-
ently identifiable prediction errors in dorsal striatal areas (Kim,
2006). Experiment results revealed an increase in activity in the me-
dial orbitofrontal cortex, a region previously associated with the
storing of the value of sensory pleasures, after individuals averted a
negative outcome and were rewarded. Furthermore, as demonstrated
in rats, dopamine treatments increase reward responses but not

avoidance responses, indicating that the two ostensibly contradictory
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actions have distinct neural substrates (Fernando et al., 2013). Also,
shock elicited much larger responses in the striatum than no-shock,
indicating that learning may happen through punishment (Eldar et
al,, 2016). Overall, prediction errors that converge to the striatum are
‘reward-signed" in those who learn mostly from omission events and
"punishment-signed" (aversive) in those who learn largely from pun-
ishment. This provides conclusive evidence that many action-value
signals, including those for reward and punishment, converge on the
striatum to govern behaviour.

Convergence of avoidance and reward acquisition values has
been explored utilizing separate mixed reward-punishment schemes,
and the outcome was independent. Studies from O’Doherty and col-
leagues (2004) revealed that fMRI correlates of prediction error sig-
nals may be distinguished in the dorsal and ventral striatum based on
whether active decision behaviour is required to obtain a reward re-
lated to Pavlovian conditioning. During the active choice task, the
reward prediction error was observed in both the ventral and dorso-
lateral striatum, but during the passive prediction-learning task, it
was only observed in the ventral striatum. These results supported a
previously proposed Actor/Critic architecture in the basal ganglia.
The ventral striatum, according to this hypothesis, comprises a pre-
diction-learning Critic, whereas the dorsal striatum has a policy-
learning Actor (Joel et al., 2002). These results support the MaxPain
model.

Thus, the interpretation of pain in MaxPain is reliable, but due to
the subjective nature of pain and the complexity of the field, we be-
lieve there are many alternative ways to accurately model high-level
concepts of pain in RL. Individual differences in pain processing add
another layer of complexity to the pain pathway, which extends be-

yond the convergence of reward and punishment signals on the stria-
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Figure 3. A contrast of the neural pathways controlling painful and rewarding
sensations respectively. Acute pain begins at nociceptors—specific receptors of
somatic neurons that detect noxious stimuli apart from other stimuli. One of the
first modules of the pain pathway in the brain is the thalamus; typical reward
circuitry does not involve the thalamus. (Left) The spinal cord sends afferent noci-
ceptive pain information to the brain. The pathway covers several brain regions;
the primary somatosensory cortex (S1, S2), anterior cingulate cortex (ACC), and
insula receives information from the thalamus. Similarly, the basal ganglia re-
ceives information from the amygdala (Bushnell et al., 2013). (Right) The meso-
limbic pathway shows dopaminergic neurons made in the ventral tegmental area

projecting to the nucleus accumbens (Russo et al., 2013).

tum. In spite of many behavioural parallels between not receiving a
reward and being given a punishment, these two events appear to be
unique in terms of prediction learning, and the substrate for unpleas-
ant prediction learning is still unknown. It is important to note, how-
ever, that these studies do not equate the mechanism of learning from
painful stimuli to that of reward stimuli. Although reward is clearly
intertwined in pain/pleasure, physiological response, learning rate,
observed behaviour, and our own experience draws a clear distinc-
tion between the two. Furthermore, signaling or prediction mistakes
for negative outcomes do not always appear to involve dopaminergic
neurons (Mirenowicz & Schultz, 1996), despite the fact that they in-

dicate negative prediction errors due to the absence of appetitive
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events (Bayer et al., 2007).

Using a unique brain mapping method, Kohoutova and col-
leagues located regions of the brain that show either high or low in-
ter-individual variability in relation to pain. In addition to the anteri-
or midcingulate cortex, the dorsolateral prefrontal cortex, and the
cerebellum, twenty-one other brain areas have been shown to have a
role in pain prediction as well. And contrary to common assumption,
electropharmacogram analysis of brain recordings reveals that pun-
ishment prediction errors have been recorded in several brain areas,
including the insula cortex, co-occurring with and with opposite sign
to reward (Pessiglione et. a., 2006). Given the pre-existing psycholog-
ical data described in the Operant Conditioning section of this re-
search, the variety of the areas engaged in pain processing indicates
even greater variability than the negation of reward.

Moreover, pain is highly subjective, making direct measurement
difficult; instead, we must rely on self-report and, to some extent,
behaviour to make sense of it. Variations in cerebral activity caused
by the same painful stimuli corroborate self-reported pain differ-
ences and are predicted by brain morphology (Coghill, 2003). High
levels of individual variability were found in the ventromedial pre-
frontal cortex, whereas lower amounts were seen in the posterior
midcingulate cortex, implying that these regions’ contributions to
pain vary greatly among people. Analyzing the brain regions collec-
tively as opposed to independently (i.e. multivariate analysis) yielded
the same results. Individual variance was highest in the ventrolateral,
vermis, and ventromedial prefrontal cortex. Individually, the posteri-
or midcingulate cortex, the supplementary motor area, and the sen-
sorimotor cortex were the most stable regions. Intriguingly, these
findings were confirmed by tests performed with a completely new

set of data. Collectively, these findings show that the relationship
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between brain regions and pain perception at the level of the individ-
ual is more complex than it is often portrayed at the level of the
group. As a result, the fact that pain is experienced differently by dif-
ferent people demonstrates how subjective data may be used to refine
algorithms.

Both animals and humans are able to solve in online, generalized,
and sample efficient manners despite the fact that real-time neural
computation is severely limited; this suggests neural mechanisms can
be a source for new theoretical approaches, such as modifications to
improve computational efficiency and mechanisms for interacting
with constant and noisy sensory experience.

We have discussed the basics of dopaminergic learning and how
it relates to the A2C model from RL literature through the concept of
TD-learning. We then reviewed the difference between response cost
punishment and aversive punishment in the operant conditioning
subsection. The former is equivalent to negative reward but is impre-
cisely considered punishment in the current RL paradigm. Aversive
punishment more accurately portrays pain in human learning. In the
Neurological Pain Pathways section, we concluded our justification
of separable and unique pain and reward pathways. This is the basis
for the justification of our proposed architectures. Now, we move to
the discussion where we analyze existing literature and how we can
improve upon the paradigm through the incorporation of the empiri-

cal and neuronal differences of pain and reward.
Discussion

Typical RL algorithms do not incorporate learning from pain. Fur-
thermore, learning from an action resulting in negative reward, or
response cost, mirrors neither observed human behaviour in aversive
punishment nor the neural circuitry involved in processing pain.

This is in contrast to the rough parallels of reward based operant



Canadian Undergraduate Journal of Cognitive Science 247
conditioning to reinforcement learning via reward prediction error.
Therefore, we review several approaches to incorporate pain with
reinforcement learning, finally proposing alternatives and expan-
sions to form a landscape of pain in RL which we call Deinforcement
Learning.

Before beginning, it should be noted that in environments where
reward is uniformly distributed across all possible outcomes, such as
binary right/wrong object classification, there is no purpose to learn-
ing a function to approximate pain. The purpose of pain is to learn to
avoid certain states much more vehemently and faster than learning
from a lack of a reward in the same situation. If misclassifications are
always weighted uniformly, there is no distinction between pain and

a lack of a reward.
Existing Literature and MaxPain

Existing research in the complement to our argument—
understanding pain through RL—is thoroughly explored in a paper
titled “Pain: A Precision Signal for Reinforcement Learning and Con-
trol”, which outlines the “underlying computational architecture of
the pain system” (Seymour, 2019). They formalize the concept of pain
in a high-level computational model that has a basis in RL. However,
it does not apply these parallels as a pain signal in RL. More con-
cretely, another paper titled “Parallel Reward and Punishment Con-
trol in Humans and Robots: Safe Reinforcement Learning Using the
MaxPain Algorithm” focuses on using pain signals in RL to avoid
physical damage.

The relative “safety” of this algorithm makes it useful for robotics
applications, where physical damage can occur in undesirable states
and therefore the agent (robot) must learn to avoid what are per-
ceived as “painful” states (Elfwing & Seymour, 2017). Yet another

paper expands on the work of Elfwing and Seymour by implement-
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ing a similar architecture with multiple Q values and learning entire-
ly separate value estimations for the two (Lin, 2019). They dubbed
this “split-Q learning”. Both of these papers show that considering
pain in some form as a control signal results in faster convergence
and more complex behaviour. We argue that the MaxPain implemen-
tation can be improved upon to increase its efficacy as well as its ac-
curacy in modeling pain.

The MaxPain paper implements pain in RL by splitting the re-
ward scalar based on its sign. Any positive rewards remain positive.
Negative rewards are inverted to be positive and are now
considered “pain”. These separate signals are then evaluated by dis-
tinct networks. To estimate these values with respect to the state of
the agent, the MaxPain architecture considers two distinct state-
action-pair-value estimation functions (Q-functions). One is for esti-
mating the accumulated discounted reward for taking action “a” in
state “s” and thereafter following policy 7. The other estimates pain in
the same way. These two resulting estimations are linearly combined

into one objective through the equation shown below:

Qw(s! a) = er(s! a) - (1 - W)QP(S, a)

Here, w is the weighting factor between 0 and 1. From this point
onward, the goal of the MaxPain algorithm is to maximize that com-
bination of reward minus pain through following a policy. It is im-
plicit that finding this policy allows the agent to “solve” the problem
in the environment (i.e., balancing the pole in cartpole, finding the
exit to a maze, etc.). The MaxPain model saw “significantly safer ex-
ploration, as well as effective learning and near-optimal long-term
performance” (Elfwing & Seymour, 2017). The average learning
curves presented for a “dangerous grid world search” task indicate
faster convergence to a solution as well. Next, based on a neuroscien-

tific foundation, we compare these approaches to existing RL meth-
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Figure 4. Possible Implementations of Pain in A2C (a) Implementation option
where the environment outputs a single feedback signal (as in traditional A2C)
and this signal is split into pain and reward of various magnitudes. (b) Example
where pain and reward are separate signals from the environment established

through rewards-shaping.

odologies.
Representing Pain

There appears to be two possible ways to represent pain in the con-
text of reinforcement learning. One must distinguish between painful
and non-painful states. This can either be the job of the environment,
or the agent. In the former proposition, painful states may be a com-
pletely separate input, labeled as painful or not by the environment
itself. For example, in the context of the game chess, the environment
could send painful signals when pieces are lost, and reward when
pieces are captured. This type of approach is seen in the current prac-
tice of reward shaping but is lacking a concept of pain (though the
reward could have a negative sign). If we take this approach, then
there is now a scalar describing the painfulness of a state and we need
to augment the state to contain this new knowledge. This will allow
us to describe to another network the painfulness of a state. One pos-
sibility is to use the positional encoding technique used by Vaswani
et al. (2017) in “Attention is All You Need”.

But this is not how humans perceive pain as the universe does

not define pain for us. Fundamentally, it is the latter approach, the
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one that passes a raw state to the agent and allows the agent to inter-
pret what is reward and what is pain, that is biologically inspired. We
can see this by studying the body’s path of pain: nociception.
Nociception defines a distinction between cells that can receive
painful input and those that do not. When you touch something, a
signal is propagated along mechanoreceptors. If you touch something
hard enough, pointy enough, or hot enough, the signal propagates
along pain specific fibers (e.g., A-delta fibers, C-fibers) to signal an
acute pain to the brain (Yam et al.,, 2018). As previously discussed,
this pathway is disparate from that of an unpainful signal. The mech-
anisms that perceive pain and other stimuli fundamentally represent
the state differently before interpretation in the brain. How would
this look in reinforcement learning? This may take the form of a
clustering algorithm whose clusters represent painful vs rewarding
stimuli and various interpolations of those classes. After clustering
into discrete signals, the pain and reward signals could be processed
and interpreted with different learning mechanisms as they are in the
brain. It may take the form of a classification neural network (or sup-
port vector machines among other algorithms), whose logit probabil-
ities can be interpreted as dimensions along various sensory stimuli
such as touch, pain, temperature etc. This leaves the state open to
interpretation by multiple perception pathways; you can not only feel
pain when pricked by a needle, you can also feel pressure. There are
many other possibilities for representing this distinction between
pain and other sensory information at the initial reception at the sen-

sory level.
Interpreting and Learning from Pain

Next, how does one interpret pain within the RL equivalent of a
brain? In our working example, the A2C method (see Reinforcement

Learning section) uses the critic to evaluate how valued a state is with
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respect only to estimated future reward. Operant conditioning shows
that reward and pain pathways trigger learning at different rates and
to varying effect. Therefore, it is necessary to have different repre-
sentations of V (s) with respect to pain, and with respect to reward.
This allows learning to be modulated according to the painfulness of
experiences. One way to achieve this is to first modify the state with
information from the pain classification processing mentioned
above. Then this information is passed to the critic, whose weights
should learn a representation of V (s) which estimates and takes into
account both the estimation of future pain and reward, then outputs
two values of V (s) with respect to both pain and reward (Figure 5).
This is similar to the framework by Elfwing and Seymour (2017), but

instead learns the weighting factor w of combining Q(s, Q) outputs. It
also relies on an overparameterized critic network which converges
to two nodes at some intermediate layer rather than using two sepa-
rate critics.

Alternatively, the modified state information is passed to the
critic, which must learn to accurately represent the state as estima-
tions of V(s),4, and V (s),... Output these two different values, and
pass these values to the actor. The actor can then learn weights to
combine pain and reward into a customary single V (s) rather than
the two-layer output in Figure 5. This shifts the burden of estimating
Viuin(s) and V,,...q(s) to the actor, as in Figure 6. Similarly, this learns
the weighting factor w to combine the different estimated values of
state rather than linearly combining them as originally tested by
Elfwing and Seymour (2017).

Finally, another possible implementation is to train separate crit-
ic algorithms after binary classification of pain or nonpainful stimuli.
This can be likened to ensemble approaches. This approach is the

least biologically faithful since states are not best represented by such
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Figure 5. Example Critic with V,;;,(s) and V o.d(s) Outputs. Fig. 5 extends Fig. 4
with an additional example implementation of pain in A2C, wherein the output
layer of the critic has two nodes in order to explicitly represent the approximated V
(s) with respect to both pain and reward. The network’s overall size could have any
number of layers and nodes, but in an explicit representation of V,,;,(s), the output
has at least two nodes in order to represent these values

a binary classification. The complicated dopaminergic ties to pain
were explored by the Neurological Pain Pathways section, who
demonstrated that discretizing the pain and reward pathways by us-
ing entirely different critics is also not entirely biologically accurate.
However, despite its shortcomings, any incorporation of a pain esti-
mate is likely more accurate than none. Moreover, this approach,
taken by Elfwing and Seymour (2017), as the basis of the MaxPain
architecture, showed faster convergence and safer behaviour.

As shown, reward and motivation to escape is caused by painful
stimuli. To mirror this type of aversion, one could use concepts like
memory buffers, and algorithms may learn to associate the end of
painful states with higher values, increasing the expected reward

term as in TD learning.
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Figure 6. Example Actor with V ()i, and V (S),ewara it Third Layer. Fig. 6 depicts
an example wherein the critic only outputs one value as in the typical A2C para-
digm (contrary to Fig. 5). Thus, the burden of representing V (s),,, is shifted onto
the actor, which at some point should have a two-node layer as shown. There is no
exact recommendation for in which layer this compression should occur, but in this

example, it is depicted in the third layer.
Valuing and Weighting Pain

In order to delve deeper into the MaxPain implementation of pain
valuation in reinforcement learning. we will continue to refer to Sey-
mour’s (2019) investigation of pain. Seymour states that “it is clear
that pain is constructed not only from nociceptive input, but also
from a set of cortical and subcortical components that compute the
effective magnitude of pain as a control signal” (Seymour, 2019, p.
1036). As discussed, MaxPain takes the latter into consideration
through a fixed w (weighting) variable. The closer to 1 this w variable
is, the less that pain is considered in the final Q, result and vice versa.
There is no change to how pain is weighted in the agent’s “mental
model” as it learns or based on state context. The hyperparameter w
is set before training.

The figures in the MaxPain paper illustrate how modifying this
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weighting factor affects how the agent performs in the “dangerous
grid world” task. In this task, crashing into the wall is considered
“painful” and the frequency of that occurrence should be reduced.
The authors tested various levels of pain aversion by setting w to 0.1,
0.5, and 0.9. The figures in the paper present the trade-off; models
that are heavily pain-aversive will be more “careful”, usually at the
cost of solution efficiency (Elfwing & Seymour, 2017). In this case,
fixing w and explicitly modeling different values made the results of
the MaxPain algorithm more interpretable and clearer.

Alternatively, one way to modify the weighting factor is dis-
cussed in “Modular Deep Reinforcement Learning from Reward and
Punishment for Robot Navigation” (Wang et al., 2021). The authors
of the paper proposed a Boltzmann distribution-based selection
mechanism for finding weighting factors that are applied to separate
reward and pain optimization policies to find a joint policy. The
weighting factor is dependent on a state-evaluation function V (s) in
an interesting way. There is a temperature variable 7, that determines
how evenly mixed the w* and w- variables are. The way temperature
and V (s) affect the weighting factors are shown below:
if 7, = 0o, w*(s) = w=(s) = 0.5if r, » 0, w*(s) = 1 and w(s) = Owhen V +(s)

>V -(s) w(s) = 0and w(s) = I when V+(s) < V(s

The latter, where 7,, is zero, is called hard-max weighting. After
experimentation, the authors concluded that “Deep MaxPain with
hard-max weighting achieved the best overall performance” com-
pared to fixed weights and standard DQN because it “utilized real-
time assessments for weighting two sub-policies” (Wang et al., 2021,
p. 125). However, pain and reward in the real world are not binaries
to choose from when considering a policy to follow. There is always
an influence of both future reward and pain when choosing actions

in a state. As environments grow more complex, so should the con-
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siderations that affect the weighting of the policy.

We propose that a separate predictor network be used to provide
the weighting variable at each timestep. Making the weighting varia-
ble dynamic and learned across timesteps may have several ad-
vantages. Firstly, it more accurately models the aforementioned “set
of cortical and subcortical components that compute the effective
magnitude of pain” (Seymour, 2019, p. 1036), since neurons are not
fixed hyperparameters but instead dynamic and context-dependent
mechanisms of learning. Moreover, it allows for more complex, high-
er-level behaviour where an agent has to decide if the “pain is worth
the gain”, depending on the context of the state.

As for the inputs of the weighting variable network, it could con-
sider either the current state, a state memory buffer, time spent in the
current training episode, time spent until the episode terminates, the
level of “damage” the agent has already sustained, or any further pos-
sibilities and combinations of relevant information. The output
would be a normalized scalar between O and 1 used to linearly com-
bine Q, and Q, in the case of MaxPain, or two separate sub-policies in
the case of Deep MaxPain. Regardless of this specific proposed im-
plementation, allowing the weighting variable to be dynamic and
context-dependent will lead to more balanced and adaptable behav-
iour in a MaxPain agent. Designing or Discovering Painful Stimuli.

Finally, in returning to general mechanisms of Deinforcement
Learning, there remains the question of what is painful. Secondarily,
how do we construct a state provided by the environment that might
allow us to learn what is painful? This may be the most difficult com-
ponent of Deinforcement Learning. For humans, this is initially par-
tially encoded by genetics. We learn what is painful through evolu-
tionary genetic iterations. Each iteration we approximate reward

such that fitness increases. Similarly, pain can approximate behav-
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iours to avoid such that fitness increases. Along with genetics, what is
painful changes throughout a lifetime; it is learned through experi-
ences as well as internally modulated through complex top-down
modulatory pathways, beyond the scope of the neuroscience de-
scribed in this paper.

The most literal machine learning analogue to the genetically
encoded aspect of pain might be an actor which can reproduce or
spawn new networks with its learned weights. Here we suggest ap-
plying genetic algorithms to the context of Deinforcement Learning
agents, providing a method to allow networks to learn what should
be considered painful. In such an implementation, the probability of
reproduction in this context correlates with the problem that the net-
work is trying to solve. The network also needs a reward heuristic,
such as time alive or reproductive success. It learns as described
above, making estimations of how painful or rewarding the environ-
ment might be. If the pain estimate is not correct, this negatively af-
fects the network’s predictions, making it less likely to reproduce. If
an inaccurate pain estimation led to a very low performing model,
the agent may be deactivated, or effectively killed. Thus, a successful,
fit network should learn to define pain in a similar manner to hu-
mans—that which should be avoided for the sake of reproducing the
network. These reproductive odds defined within the genetic algo-
rithm provide a separate signal to learn from besides the immediate-
term reward signal and potential pain signal.

Concretely, if the network should learn to make a stick figure
walk like in OpenAI's MuJoCo framework, then reproductive success
may be set as a function of time spent walking versus energy expend-
ed. Networks that avoid fatal falls or expend less energy in their
movement should have a higher probability of reproducing or repli-

cating their weights in new networks. Here, an initial sensory layer as
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discussed in the “Representing Pain” section would group together
similar states and outcomes based on their features, modulate the
given state of the environment to hold this painful information, then
finally pass it to a critic. The critic estimates the value of the state
with respect to potential pain and reward. Alternatively, two critics
could be used similar to the MaxPain architecture. Then, if the agent
were near a box that it might trip over, the current sensed pain may
be 0, but the critic may weigh future states as very painful and V,,;,(s)
very low. Its estimation V,,;,(s) would be tuned as it attempts to walk,
and further tuned as it replicates its weights in other agents based on
its walking success.

One may not find a need for literal analogues such as genetic
algorithms. In the above case, one implicitly defines pain merely by
defining what success is. In the MuJoCo example we did this—pain
was implicitly that which must be avoided to achieve success of walk-
ing, for example, tripping. However, a model can receive a single sig-
nal (like reward in the current paradigm) and learn pain aversive be-
haviour. Crucially this must, at some point in processing, interpret
the signal with respect to pain and pleasure, which together update
the model’s policy in dissimilar ways, just as the proposed algorithms
in Figure 4 describe, or the algorithms discussed in “Existing Litera-
ture and MaxPain”.

Those familiar with RL may now be wondering: initial clustering
algorithms, modified critics, and learned hyperparameters—are these
really a significant change from standard RL practices? The key dif-
ference is not only in these simple, fundamental algorithmic changes
but in coupling them with environmental changes conducive to pain
aversive learning. As initially described, without an environment
where correctness or incorrectness is non-uniformly distributed,

pain is not a useful concept. This means that to test the incorporation
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of pain processing with something as simple as an MNIST classifier,
one would need to quantify how close each classification was to the
correct classification and build that into the reward or ground truth.
Ultimately, there are many possible scenarios where pain would in-
crease convergence or safety. Anywhere where particular states must
be avoided more than a typical “failure" is a good application of Dein-

forcement Learning.
Conclusion

We have seen that reinforcement learning and neuroscience are intri-
cately intertwined, beginning with their overlapping uses of reward
prediction error and TD learning. Continuing to draw inspiration
from the brain and body to enhance modern RL algorithms is a fruit-
ful frontier. Many areas of how humans learn from pain are yet to be
investigated; the role of emotional pain and trauma was not exam-
ined in this paper. However, the growing neuroscientific body of
knowledge on pain allows us to examine the phenomena as a model
for novel RL algorithms. Thus, we conclude new RL models which
learn pain aversive behaviour are necessary to propel the field to-

wards more realistic, safe, efficient learning paradigms.
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